Synthetic and semi-synthetic approaches to unprotected N-glycan oxazolines
نویسنده
چکیده
N-Glycan oxazolines have found widespread use as activated donor substrates for endo-β-N-acetylglucosaminidase (ENGase) enzymes, an important application that has correspondingly stimulated interest in their production, both by total synthesis and by semi-synthesis using oligosaccharides isolated from natural sources. Amongst the many synthetic approaches reported, the majority rely on the fabrication (either by total synthesis, or semi-synthesis from locust bean gum) of a key Manβ(1-4)GlcNAc disaccharide, which can then be elaborated at the 3- and 6-positions of the mannose unit using standard glycosylation chemistry. Early approaches subsequently relied on the Lewis acid catalysed conversion of peracetylated N-glycan oligosaccharides produced in this manner into their corresponding oxazolines, followed by global deprotection. However, a key breakthrough in the field has been the development by Shoda of 2-chloro-1,3-dimethylimidazolinium chloride (DMC), and related reagents, which can direct convert an oligosaccharide with a 2-acetamido sugar at the reducing terminus directly into the corresponding oxazoline in water. Therefore, oxazoline formation can now be achieved in water as the final step of any synthetic sequence, obviating the need for any further protecting group manipulations, and simplifying synthetic strategies. As an alternative to total synthesis, significant quantities of several structurally complicated N-glycans can be isolated from natural sources, such as egg yolks and soy bean flour. Enzymatic transformations of these materials, in concert with DMC-mediated oxazoline formation as a final step, allow access to a selection of N-glycan oxazoline structures both in larger quantities and in a more expedient fashion than is achievable by total synthesis.
منابع مشابه
Efficient glycosynthase mutant derived from Mucor hiemalis endo-beta-N-acetylglucosaminidase capable of transferring oligosaccharide from both sugar oxazoline and natural N-glycan.
Endo-M, an endo-beta-N-acetylglucosaminidase from Mucor hiemalis, is a family 85 glycoside hydrolase. This enzyme is unique in that it can transfer en bloc the oligosaccharide of various types of N-glycans onto different acceptors, and thereby it enzymatically generates diverse glycoconjugates. In this study, we performed mutational and kinetic studies focusing on a key catalytic asparagine 175...
متن کاملEthical Debates on Synthetic Biology
Background: As an emerging interdisciplinary area of science with a multitude of potential facilities and applications, synthetic biology integrates different disciplines with one another ranging from basic science to engineering. This interdisciplinary branch therefore encompasses sciences that require specific development and ethical approaches. Materials and Methods: Science management princ...
متن کاملThree Component Syntheses of Pyrrolo Imidazole Derivatives in the Presence of N-methyl imidazole, Activated Acetylenes and Phenylsulfonylacetophenone
Because of the significant role in biological processes in living cells and the diverse types of physiological activities, heterocyclic compounds are in focus of intense investigations by academic, industry and applied-oriented chemists. Considerably, ascientific renaissance of heterocycles during the last decades is closely related to the development of multicomponent approaches to their s...
متن کاملPalladium-Catalyzed, Enantioselective Heine Reaction
Aziridines are important synthetic intermediates for the generation of nitrogen-containing molecules. N-Acylaziridines undergo rearrangement by ring expansion to produce oxazolines, a process known as the Heine reaction. The first catalytic, enantioselective Heine reaction is reported for meso-N-acylaziridines where a palladium(II)-diphosphine complex is employed. The highly enantioenriched oxa...
متن کاملAn Expeditious Synthesis of Sialic Acid Derivatives by Copper(I)-Catalyzed Stereodivergent Propargylation of Unprotected Aldoses.
We developed a copper(I)-catalyzed stereodivergent anomeric propargylation of unprotected aldoses as a facile synthetic pathway to a broad variety of sialic acid derivatives. The soft allenylcopper(I) species, catalytically generated from stable allenylboronic acid pinacolate (2), is unusually inert to protonolysis by the multiple hydroxy groups of the substrates and thereby functions as a carb...
متن کامل